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IMPORTANCE Knowledge is lacking on the prevalence and prognosis of individuals with a
β-amyloid–negative, tau-positive (A−T+) cerebrospinal fluid (CSF) biomarker profile.

OBJECTIVE To estimate the prevalence of a CSF A−T+ biomarker profile and investigate its
clinical implications.

DESIGN, SETTING, AND PARTICIPANTS This was a retrospective cohort study of the
cross-sectional multicenter University of Gothenburg (UGOT) cohort (November
2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative
(ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive
impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer
Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals
without cognitive impairment; February 2007-November 2020). This was a multicenter
study, with data collected from referral centers in clinical routine (UGOT) and research
settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more
cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate
occasions. Data were analyzed on August 2022 to April 2023.

EXPOSURES Baseline CSF Aβ42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI:
modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC
[PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission
tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET
(FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240).

MAIN OUTCOMES AND MEASURES Primary outcomes were the prevalence of CSF AT biomarker
profiles and continuous longitudinal global cognitive outcome and imaging biomarker
trajectories in A−T+ vs A−T− groups. Secondary outcomes included cross-sectional tau-PET.

RESULTS A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were
included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male
[54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years;
346 female [67%]) were included in the WISC cohort. The prevalence of an A−T+ profile in the
UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns.
Longitudinally, no significant differences in rates of worsening were observed between A−T+
and A−T− profiles for cognition or imaging biomarkers. Cross-sectionally, A−T+ had similar
tau-PET uptake to individuals with an A−T− biomarker profile.

CONCLUSION AND RELEVANCE Results suggest that the CSF A−T+ biomarker profile was found
in approximately 5% of lumbar punctures and was not associated with a higher rate of
cognitive decline or biomarker signs of disease progression compared with biomarker-
negative individuals.
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C erebrospinal fluid (CSF) analysis is a well-established
method to support a clinical diagnosis of Alzheimer dis-
ease (AD), with validated and clinically approved bio-

markers for β-amyloid (Aβ) pathology, phosphorylated tau
(p-tau), and neurodegeneration. In recent research criteria, low
Aβ42 or Aβ42/40 ratio and increased concentration of p-tau
have been proposed to support the diagnosis of AD,1 with the
AT(N) system classifying CSF Aβ and p-tau in the “A” and “T”
categories, respectively.2 A proposed model of AD pathogen-
esis suggests that biomarkers reflecting Aβ pathology be-
come abnormal before measures of tau pathology, which is now
supported by a vast body of evidence.3

Normal CSF Aβ in combination with increased p-tau is a find-
ing sometimes seen in clinical settings.2 Because p-tau increases
are suggested to be AD specific,4,5 and increases would not be
expected in Aβ-negative individuals, this finding is challenging
to interpret. Guidelines vary in the terminology assigned to this
finding, mostly encompassing the concept of suspected non-
Alzheimerpathology.6 Forexample,studiesevaluatingthepreva-
lence of CSF biomarker abnormalities suggest that such an A−T+
CSF profile can be found in up to 20% of cognitively unimpaired
(CU) older adults.7-10 In addition, available studies show mixed
results in the progression of disease-related changes in individu-
als with this biomarker profile.7,10,11 Previously, various propo-
sitions have been made to explain its underlying cause, includ-
ing non-AD tauopathies (ie, primary age-related tauopathy) and
altered CSF dynamics, among others.6,12 Importantly, these ex-
planationslikelyvarydependingonthebiomarkermodalitybeing
used. Unlike Aβ biomarkers, which seem to provide similar infor-
mation in terms of “A” status when determined by positron
emission tomography (PET) or CSF, tau biomarkers present pro-
nounced differences across imaging and fluid modalities. Al-
though fibrillar tau aggregates targeted by tau-PET radiotracers
arelikelyamoredirectproxyoftanglepathology,13,14 solublep-tau
measured by immunoassays may reflect a neuronal response to
Aβpathology,15-18 althoughp-tauisalsopresentindystrophicneu-
rites, suggesting that it also reflects tau pathology.19,20 Although
evidence is accumulating that individuals with an A+T− biomark-
er profile (and to a greater extent, those with both CSF signs of Aβ
and soluble tau pathology [A+T+]) are at risk for cognitive
decline,7,10 lessisknownabouttheclinical implicationsoftheCSF
A−T+pattern.BecauseCSFbiomarkersarefrequentlyusedinclini-
calpractice, it is importanttofurtherunderstandtheimplications
of patterns not expected within the currently proposed model of
AD biomarker progression.

Given the lack of studies directly evaluating the clinical rel-
evance and prevalence of an isolated increase in CSF p-tau, we
aimed to assess the prevalence, as well as cognitive and biomark-
er progression rates, associated with the CSF A−T+ profile, using
4 large data sets.

Methods
Design
Four cohorts were used in the present study: University
of Gothenburg (UGOT), the Alzheimer Disease Neuroimaging
Initiative (ADNI), Wisconsin Registry for Alzheimer Preven-

tion (WRAP), and Wisconsin Alzheimer Disease Research
Center (WI-ADRC). For each cohort, a local institutional re-
view board for human research or ethics committee ap-
proved of the study. The UGOT cohort consisted of cross-
sectional data and was retrospectively compiled using
anonymized data from the clinical routine laboratory data-
base at Sahlgrenska University Hospital, Gothenburg, Sweden,
based on CSF analyses performed between November 2019 and
January 2021. ADNI is a longitudinal multicenter observa-
tional study with data being collected between September 2005
and May 2022. WRAP and the Wisconsin Alzheimer Disease
Research Center (WI-ADRC) are single-center, longitudinal, ob-
servational, cohort studies that collected data between Feb-
ruary 2007 and November 2020. The present study followed
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guidelines.

Setting
The UGOT cohort consists of individuals who underwent lum-
bar puncture primarily in memory and neurology clinics. The
ADNI is a study of volunteers with MCI or early AD, as well as
CU individuals enrolled at memory clinics.11 The WISC sample
included longitudinally observed participants enrolled at
midlife at the WRAP or the WI-ADRC referral centers.21 Due to
their similarities in data collection, WRAP and WI-ADRC were
combined and analyzed together and will subsequently be de-
noted as WISC.

Participants
In the UGOT cohort, all participants were older than 50 years
and had data on age, sex, and CSF biomarker concentrations,
whereas clinical information on diagnosis and cognitive func-
tion was not available. In the well-characterized longitudinal
observational cohorts (ADNI and WISC), we included only in-
dividuals who were CU or had mild cognitive impairment (MCI;
only in ADNI) at the first cognitive evaluation. In the UGOT co-
hort, no data on participant race and ethnicity were avail-
able, as they are not routinely collected by health care ser-
vices. In the ADNI cohort, race categories included were

Key Points
Question What is the memory clinic prevalence and prognosis of
individuals who have a β-amyloid–negative, tau-positive (A−T+)
cerebrospinal fluid (CSF) profile?

Findings In a clinical cohort of 7679 individuals, prevalence of
A−T+ CSF was 4.1%. Longitudinally, cognitively unimpaired
individuals or individuals with mild cognitive impairment and an
A−T+ CSF profile exhibited similar trajectories to individuals with
an A−T− CSF profile in relation to cognitive deterioration, brain
atrophy, or cerebral glucose metabolism and β-amyloid burden
indexed by positron emission tomography.

Meaning A CSF profile of A−T+ appears to be benign despite being
classified as a pathologic change by guidelines; compared with
individuals with biomarker-negative CSF, individuals with A−T+ CSF
do not have higher rates of cognitive decline or faster disease
progression.
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American Indian or Alaska Native, Asian, Black, Hawaiian, mul-
tiracial, and White. In the WISC cohort, individuals self-
identifying as White were reported, whereas American Indian
or Alaska Native, Asian, Black or African American, or those
not identifying as any of the stated races (here indicated as
other), were not reported to maintain anonymity for groups
with less than 3 individuals. More information on all cohorts
used can be found in eMethods 1 in Supplement 1, and de-
tailed inclusion and exclusion criteria have been described for
the ADNI22 and WISC cohorts.21 Written informed consent was
obtained from participants in the ADNI and WISC cohorts, and
local institutional review boards for human research ap-
proved the study. For the UGOT data, in accordance with the
Helsinki declaration, an external ethics committee has ap-
proved the procedure of using data from this cohort in re-
search purposes.5 There were no identifiable data used in this
study, and thus, no informed consent was needed.

CSF Biomarkers
CSF Aβ42/40 ratio and p-tau181 (hereafter referred to as
p-tau) were quantified in all participants and were used to
define AT status in all 3 cohorts. In the UGOT cohort, CSF
concentrations of Aβ42, Aβ40, and p-tau were quantified on
the Lumipulse G1200 platform (Fujirebio), a fully auto-
mated assay recently approved by the US Food and Drug
Administration.23 In both the ADNI and WISC cohorts, p-tau
was quantified using a fully automated Elecsys assay
(Roche), also recently approved by the US Food and Drug
Administration. Aβ42 and Aβ40 were measured with mass
spectrometry and Elecsys assays in the ADNI and WISC
cohorts, respectively. Elecsys Aβ42 is an in vitro diagnostic
test approved for use in the European Union and US; Aβ40
was measured using a research use−only Elecsys assay. CSF
status determined at baseline lumbar puncture was tested
in the WISC analyses. In all cohorts, previously established
cohort-specific cutoffs were used. In ADNI, cutoffs of
0.0138 or less and 24 pg/mL or greater were used for
Aβ42/40 and p-tau, respectively. In WISC, abnormal bio-
marker results were determined to be 0.046 or less and 24.8
pg/mL or greater for Aβ42/40 and p-tau, respectively. More
information on the CSF collection and quantification of and
cutoff determination for Aβ42, Aβ40, and p-tau can be
found in eMethods 2 in Supplement 1.

Imaging Biomarkers
In longitudinal imaging analyses in ADNI participants, we in-
cluded those who had at least a baseline and a follow-up scan.
We evaluated longitudinal trajectories of Aβ [18F]-florbetapir,
[18F]-fluorodeoxyglucose (FDG) PET, and hippocampal vol-
ume magnetic resonance imaging (MRI). A brief description
of imaging methods can be found in eMethods 3 in
Supplement 1.24,25 As a secondary analysis, we evaluated sum-
mary tau-PET measures between CSF AT groups, to investi-
gate whether elevated p-tau in the absence of Aβ could rep-
resent an abnormal tau-PET phenotype. In the WISC sample,
a subset of participants underwent [18F]-MK6240 tau-PET and
were evaluated with an entorhinal cortex region of interest
(ROI), as further detailed in eMethods 3 in Supplement 1.26

In the ADNI cohort, a subsample of the individuals herein in-
cluded had available [18F]-flortaucipir tau-PET data up to 6
years after the baseline lumbar puncture, and the previously
described ADNI meta-temporal ROI was used as the compos-
ite region.27

Cognitive Assessments
The cognitive measures used for longitudinal analyses in the
2 observational cohorts were 2 different versions of the pre-
clinical Alzheimer cognitive composite (PACC): the modified
PACC (mPACC) in ADNI and a modified 3-test PACC (PACC-3)
in WISC.28-30 The PACC is a sensitive measure for tracking early
cognitive decline, composed typically of 3 key domains: epi-
sodic memory, executive function, and global cognition.31,32

Specific mPACC and PACC-3 details can be found in eMethods
4 in Supplement 1.

Statistical Analysis
In the UGOT cohort, we estimated the prevalence of the CSF
AT profiles across ages. To better visualize the prevalence
across different ages, we fitted a locally estimated scatter-
plot smoothing line (LOESS), which is a flexible nonlinear
regression approach. In all cohorts, general prevalence of
each CSF AT profile was calculated, and 95% CIs were
estimated using 1-sample proportions tests. In the UGOT
cohort, we also performed a sensitivity analysis to evaluate
if measured concentrations changed over time or if cutoff-
related differences influenced the prevalence (eMethods 5
in Supplement 1).

We used linear mixed-effects models to investigate
whether CSF AT group modified the longitudinal rate of change
in cognitive function in ADNI (mPACC) and WISC (PACC-3), as
well as in Aβ-PET, FDG-PET, and MRI-derived hippocampal vol-
ume (ADNI only). The models were fitted with random slopes
and intercepts on the participant level and included CSF AT
group (A−T− as reference), age, sex, APOE ε4 carrier status, and
years of education, and an interaction term between CSF AT
group and time. In the cognition models, a continuous term
adjusting for practice effects (ie, number of occasions the out-
come tests were taken before last cognitive assessment) was
included in both the ADNI and WISC cohorts, with the time
being modeled as age. The WISC model also adjusted for co-
hort membership. In the ADNI cohort, for each outcome, we
fitted separate models for CU individuals at baseline and MCI
at baseline. To investigate if a more stringent p-tau cutoff in-
fluenced the results of the linear mixed-effects models in the
ADNI and WISC cohorts, we performed a sensitivity analysis
increasing the predetermined p-tau cutoff values by 15%. As
a secondary analysis, we cross-sectionally examined differ-
ences in tau-PET uptake across CSF AT groups, in the ADNI and
WISC cohorts, with linear models, controlling for age, sex,
APOE ε4 status, and years of education. Pairwise compari-
sons using Šidák correction to control for family-wise error rate
were performed following a significant omnibus test result.
P values were 2-sided, and the cutoff for significance was set
to P < .05. Statistical analyses were performed using R soft-
ware, version 4.1.2 (R Project for Statistical Computing). Data
were analyzed on April 2022 to April 2023.
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Results

Baseline CSF Characteristics
A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101
male [53%]; 3578 female [47%]) were included in the UGOT co-
hort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male
[54%]; 444 female [46%]) were included in the ADNI cohort,
and 519 individuals (mean [SD] age, 60 [7.3] years; 346 fe-
male [67%]; 173 male [33%]) were included in the WISC co-
hort. The ADNI cohort included 364 CU individuals and 606
individuals with MCI. The WISC cohort included 513 CU indi-
viduals and 6 individuals with MCI. In the ADNI cohort, study
participants identified with the following race and ethnicity
categories: 1 American Indian or Alaska Native (0.3%), 9 Asian
(2.3%), 25 Black (6.5%), 1 Hawaiian (0.3%), 7 multiracial (1.8%),
and 341 White (88%). In the WISC cohort, 493 individuals (95%)
self-identifying as White were reported; individuals identify-
ing as American Indian or Alaska Native, Asian, Black or African
American, or other were not reported in order to maintain ano-
nymity for groups with 3 or fewer individuals. Key informa-
tion on demographic and other variables is displayed in the
Table.

Prevalence of CSF AT Profiles
in a Real-World Clinical Routine Setting
In the UGOT cohort, 316 of 7679 individuals (4.1%; 95% CI,
3.7%-4.6%) displayed an A−T+ profile, whereas the preva-
lence of A−T− was 3241 of 7679 (42%; 95% CI, 41%-43%), the
prevalence of A+T− was 1324 of 7679 (17%; 95% CI, 16%-18%),
and the prevalence of A+T+ was 2798 of 7679 (36%; 95% CI,
35%-38%). Similar estimates were found in the ADNI and WISC
cohorts (Table). Alternatively, if determining “A” by CSF Aβ42
alone, as done in several studies discussed subsequently, the
prevalence of an A−T+ profile would be 19% (95% CI, 18%-
20%) and 37% (95% CI, 36%-38%), 22% (95% CI, 21%-23%), and
21% (95% CI, 20%-22%) for A−T−, A+T−, and A+T+ profiles,
respectively.

In visual interpretation of age-stratified LOESS curves, we
found that although the prevalence of other CSF profiles
changed dynamically toward abnormality with aging, whereas
the prevalence of the A−T+ profile was stable with older age,
with a minor increase in the age prevalence after 75 years
(Figure 1A). In contrast, when performing the same analysis
with Aβ42 alone as “A,” a different trend was observed. The
age-stratified rates of an A−T+ profile displayed a similar trend
to that of A+T− and A+T+ profiles, with all presenting in-
creased prevalence with increased age, reaching similar fig-
ures of approximately 25% each in the oldest individuals (eFig-
ure 1 in Supplement 1). In a grayscale analysis to evaluate
potential analytical effects with more stringent cutoff values
and variation in analytical performance over time, no such sig-
nificant changes were observed, and very minor changes were
found in the prevalence of the A−T+ group (eTable 1 and eFig-
ure 2 in Supplement 1). Interestingly, in both the UGOT and
ADNI cohorts, concentrations of CSF Aβ42 and Aβ40 alone
were substantially higher in the A−T+ group compared with
A−T− (Figure 1B-E).

Cognitive Trajectories
In Figure 2, we display predicted longitudinal cognitive tra-
jectories according to baseline CSF AT profiles. In the ADNI
cohort, A−T+ individuals did not present with significantly
different rates of decline in mPACC as compared with A−T−
individuals, regardless of baseline cognitive status (CU:
β = –0.09; 95% CI, −0.3 to 0.1; P = .27; MCI: β = −0.01; 95%
CI, −0.4 to 0.4; P = .99). In the WISC cohort, which included
predominantly CU individuals, the A−T+ profile did not
show significantly different rates of decline in PACC-3
scores compared with A−T− individuals (β = −0.02; 95% CI,
−0.05 to 0.02; P = .28). In both the ADNI (CU and MCI) and
WISC (CU at baseline) cohorts, individuals with A+T− and
A+T+ profiles had faster cognitive decline when compared
with those with an A−T− profile (eTables 2 and 3 in Supple-
ment 1). When using more stringent p-tau cutoff values,
similar results were obtained. Full models from both main
and sensitivity analyses are available in eTables 2, 3, 4, and
5 in Supplement 1.

Change in Imaging Markers
Next, longitudinal imaging biomarkers were used to assess
disease progression over time (Figure 3). In the ADNI
cohort, regardless of their baseline cognitive status, indi-
viduals with an A−T+ profile did not differ significantly from
those with A−T− in longitudinal rates of change in Aβ-PET
(CU: β = 0.002; 95% CI, −0.01 to 0.01; P = .44; MCI:
β = 0.002; 95% CI, −0.01 to 0.01; P = .44), FDG-PET (CU:
β = −0.002; 95% CI, −0.01 to 0.001; P = . 28, MCI:
β = −0.002; 95% CI, −0.005 to 0.002; P = .39), or hippo-
campal volume (CU: β = −19 mm3 per year; 95% CI, −40 to
1.0; P = .06; MCI: β = 3.9 mm3 per year; 95% CI, −29 to 37;
P = .82), although numerically lower in CU individuals. In
contrast and in accordance with previous studies, individu-
als with MCI and A+T+ or A+T− profiles, when compared
with those with an A−T− profile, displayed significant
changes in markers of hippocampal volume and glucose
metabolism (FDG PET and MRI, respectively) (eTables 6 and
7 in Supplement 1). In CU with an A+T− profile, no signifi-
cant changes were seen in change in FDG PET, whereas
there was a slight decrease in hippocampal volume as com-
pared with individuals with an A−T− profile (eTables 6 and 7
in Supplement 1). However, significant time-related
increases in Aβ-PET were seen for individuals with both
A+T− and A+T+ profiles independent of baseline cognitive
status. Changing the cutoff values for p-tau yielded very
similar results. Full models from both main and sensitivity
analyses are available in eTables 6, 7, 8, 9, 10, and 11 in
Supplement 1.

Fibrillar Tau Deposition
In a subset of participants who had tau-PET data (ADNI:
n = 192; WISC: n = 227), we evaluated whether isolated
p-tau positivity was associated with the deposition of fibril-
lar tau (Figure 4). In the ADNI cohort, individuals with avail-
able tau-PET in the A−T+ CSF group did not present statisti-
cally significant differences in [18F]-flortaucipir meta-
temporal ROI standardized uptake value ratio (SUVr) values
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Table. Baseline Demographics and Clinical Characteristics

Cohort

Biomarker profile

All A−T− A+T− A+T+ A−T+
UGOT

Participants, No. (%); 95% CI, %a 7679 3241 (42); 41 to 43 1324 (17); 16 to 18 2798 (36); 35 to 38 316 (4.1); 3.7 to 4.6

Age, mean (SD), y 71 (8.4) 69 (9) 73 (7.6) 73 (7.5) 73 (8.7)

Sex, No. (%)

Female 3578 (47) 1371 (42) 597 (45) 1487 (53) 123 (39)

Male 4101 (53) 1870 (58) 727 (55) 1311 (47) 193 (61)

CSF Aβ42/40, mean (SD) 0.7 (0.62) 0.93 (0.12) 0.57 (0.093) 0.44 (0.094) 1.1 (2.8)

CSF Aβ42, mean (SD), ng/L 660 (353) 803 (340) 438 (175) 515 (193) 1410 (457)

CSF Aβ40, mean (SD), ng/L 9820 (3920) 8620 (3380) 7680 (2720) 11 700 (3650) 15 000 (4230)

CSF p-tau181, mean (SD), ng/L 56 (44) 28 (9.1) 36 (8.6) 97 (48) 66 (19)

ADNI

Participants, No. (%); 95% CI, %a 970 386 (40); 37 to 43 165 (17); 15 to 20 338 (35); 32 to 38 81 (8.4); 6.7 to 10

Age at baseline, mean (SD), y 73 (7.0) 71 (6.9) 74 (6.6) 74 (7.0) 73 (7.3)

Sex (female), No. (%)

Female 444 (46) 178 (46) 68 (41) 159 (47) 39 (48)

Male 526 (54) 208 (54) 97 (59) 179 (53) 42 (52)

Race, No. (%)b

American Indian/Alaska Native 1 (0.3) 0 0 0 1 (0.1)

Asian 9 (2.3) 1 (0.6) 2 (0.6) 0 12 (1.2)

Black 25 (6.5) 4 (2.4) 8 (2.4) 1 (1.2) 38 (3.9)

Hawaiian 1 (0.3) 0 1 (0.3) 0 2 (0.2)

Multiracial 7 (1.8) 4 (2.4) 1 (0.3) 0 12 (1.2)

White 341 (88) 156 (95) 326 (96) 80 (99) 903 (93)

MCI, No. (%) 606 (63) 199 (52) 105 (64) 268 (79) 34 (42)

APOE ε4 positive, No. (%)c 403 (42) 76 (20) 87 (53) 225 (67) 15 (19)

Education, mean (SD), y 16.2 (2.7) 16.4 (2.7) 15.9 (2.8) 16.0 (2.7) 16.5 (2.7)

CSF Aβ42/40, mean (SD) 0.14 (0.057) 0.20 (0.029) 0.11 (0.023) 0.088 (0.021) 0.19 (0.034)

CSF Aβ42, mean (SD), ng/L 1180 (620) 1500 (509) 725 (273) 794 (280) 2190 (581)

CSF Aβ40, mean (SD), ng/L 8310 (2460) 7640 (2110) 6820 (1840) 9080 (2270) 11300 (2270)

CSF p-tau181, mean (SD), ng/L 256 (13) 16 (3.9) 19 (3.3) 39 (13) 29 (4.8)

mPACC, mean (SD) −3.5 (4.3) −1.7 (3.4) −3.7 (4.2) −5.9 (4.3) −1.9 (3.5)

WISCd

Participants, No. (%); 95% CI, %a 519 412 (79); 76 to 82 49 (9.4); 7.2 to 12 37 (7.1); 5.2 to 9.7 21 (4.0); 2.6 to 6.1

WRAP, No. (%) 233 (45) 178 (34) 27 (5.2) 17 (3.3) 11 (2.1)

WI-ADRC, No. (%) 286 (55) 234 (45) 22 (4.2) 20 (3.8) 10 (1.9)

Age, mean (SD), y 60 (7.3) 59 (6.9) 63 (6.2) 66 (7.8) 65 (8.6)

Age at baseline LP, y 62 (7.5) 61 (7.1) 65 (5.9) 69 (7.2) 68 (8.6)

Sex, No. (%)

Female 346 (67) 275 (67) 31 (63) 23 (62) 17 (81)

Male 173 (33) 137 (33) 18 (37) 14 (38) 4 (19)

Race, No. (%)b

American Indian/Alaska Native NR NR NR NR NR

Asian NR NR NR NR NR

Black/African American NR NR NR NR NR

White 493 (95) 390 (95) 47 (96) 35 (95) 21 (100)

Other NR NR NR NR NR

MCI at baseline LP, No. (%) 6 (1.2) 3 (0.7) 0 (0.0) 1 (2.7) 2 (9.5)

APOE ε4 positive, No. (%)c 194 (37) 138 (34) 30 (61) 23 (62) 3 (14)

Education, mean (SD), y 16.2 (2.4) 16.2 (2.5) 15.8 (2.4) 16.6 (2.2) 16.4 (1.9)

CSF Aβ42/40, mean (SD) 0.06 (.02) 0.07 (.01) 0.04 (.01) 0.03 (.01) 0.06 (.01)

(continued)
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(estimated marginal mean [EM] = 1.2; SE = 0.06) in compari-
son with the A−T− group (P = .40) (EM = 1.2; SE = 0.03). In
the WISC cohort, the A−T+ group (EM = 1.1; SE = 0.12) did
not show significantly different [18F]-MK6240 tau-PET SUVr
than the A−T− group (EM = 1.1; SE = 0.20; P = .99). In both
the ADNI and WISC cohorts, the A+T+ group had higher tau
PET SUVr (ADNI: EM = 1.54; SE = 0.03; P < .001; WISC:
EM = 1.5; SE = 0.04; P = .002) compared with the A−T+

group. Differences were less clear for the CSF A+T−group
(eTables 12 and 13 in Supplement 1).

Discussion
In this cohort study, we found that the prevalence of CSF A−T+
in a clinical neurochemistry laboratory, likely to be represen-

Table. Baseline Demographics and Clinical Characteristics (continued)

Cohort

Biomarker profile

All A−T− A+T− A+T+ A−T+
CSF Aβ42, mean (SD), ng/L 927 (379) 977 (347) 495 (148) 608 (226) 1513 (195)

CSF Aβ40, mean (SD), ng/L 14 421 (4714) 13 786 (4241) 12 947 (3474) 18 128 (3977) 23 794 (4146)

CSF p-tau181, mean (SD), ng/L 18 (6.9) 15 (4.3) 19 (3.9) 32 (7.4) 31 (5.6)

PACC-3, mean (SD) 0.09 (.94) 0.13 (.93) −0.02 (1.02) −0.12 (.89) −0.01 (.93)

Abbreviations: Aβ42/40, β-amyloid 1-42 to β-amyloid 1-40; CSF, cerebrospinal
fluid; LP, lumbar puncture; MCI, mild cognitive impairment; mPACC, modified
preclinical Alzheimer cognitive composite; NR, not reported; p-tau,
phosphorylated tau; PACC-3, modified 3-test preclinical Alzheimer cognitive
composite.
a 95% CIs were estimated using a 1-sample proportions test.
b Participants who did not self-identify as White identified as American Indian or

Alaska Native, Asian, Black or African American, or other. Numbers are NR to
maintain anonymity for groups with fewer than 3 individuals.

c Indicates the proportion of individuals carrying at least 1 copy of the APOE ε4
allele.

d In the WISC cohort, demographic and clinical characteristics, except where
otherwise noted, are from time point of first cognitive evaluation. CSF data are
from the time point of first LP.

Figure 1. Prevalence Estimates in a Clinical Laboratory Routine Setting Across Ages and Cerebrospinal Fluid (CSF) β-Amyloid 42 (Aβ42)
and Aβ40 Concentrations Among Amyloid-Negative Individuals
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display group comparisons Aβ42 and Aβ40 for the Aβ-negative amyloid-tau
(AT) biomarker profiles in both the University of Gothenburg (UGOT) and
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohorts. Group
comparisons were performed with linear regression models adjusting for
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years of education). In the UGOT cohort, mean levels of CSF Aβ42 were
significantly increased in individuals with an A−T+ profile by a mean of 627
pg/mL (95% CI, 586-667 pg/mL; P <.001), and CSF levels of Aβ40 were
significantly increased in the A−T+ group by a mean of 6504 pg/mL (95% CI,
6104-6904 pg/mL; P <.001). In ADNI, mean levels of CSF Aβ42 were
significantly increased in individuals with an A−T+ profile by a mean of 673
pg/mL (95% CI, 554-793 pg/mL; P <.001), and CSF levels of Aβ40 were
significantly increased in the A−T+ group by a mean of 3543 pg/mL (95% CI,
3054-4054 pg/mL; P <.001).
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tative of a general memory clinic population, was 4.1%, which
is far lower than the prevalence of other CSF profiles. Fur-
ther, compared with the A−T− biomarker profile, we found that
the A−T+ profile was not associated with higher rates of cog-
nitive deterioration, Aβ accumulation, tau PET pathology, or
neurodegeneration.

Several studies have attempted to determine the preva-
lence of AD pathophysiology in varying scenarios. We found that
in the UGOT cohort, CSF Aβ abnormalities ranged from approxi-
mately 25% in the youngest individuals to roughly 60% in the
oldest individuals. These estimates are lower than those found
in a recently published, large, multicenter study evaluating the
prevalence of Aβ positivity as determined by either PET or CSF.33

Thisslightdiscrepancymaybeexplainedbythepresenceofother
disorders causing cognitive symptoms in our cohort and likely
reflects more similarly what may be expected in a real-world
memory clinic, considering most CSF analyses are ordered by
memory clinics or general neurology centers across Sweden.
However, fewer studies have performed in-depth evaluations of
the clinical meaning of CSF results not consistent with the cur-
rent view of the chain of AD pathophysiological events. Previ-
ous studies evaluating the prevalence of CSF AT abnormalities
report mixed results. Although many studies report higher fig-
ures (above approximately 15%) for the prevalence of an A−T+
profile, most of these have relied on CSF Aβ42 alone to define
“A” status.7,9,10,34,35 When defining “A” with the widely recom-
mended Aβ42/40 ratio,36 this prevalence is substantially re-
duced to figures like the one reported here for this large, unse-
lected clinical chemistry cohort (approximately 4%).8 This
suggests that the absence of correction for Aβ40 concentra-
tions may lead to artificially deflated frequencies for CSF Aβ
abnormalities, and, consequently, artificially inflated frequen-

cies for a CSF A−T+ profile. This highlights the need for using CSF
Aβ42/40 in clinical settings when separately assessing “A” and
“T” CSF biomarkers.

Furthermore, discussing the etiology underlying a CSF
A−T+ profile is highly needed. For instance, individuals pre-
senting with this profile are sometimes referred to as sus-
pected non-Alzheimers pathology. This construct is most of-
ten biomarker defined as Aβ negativity in the presence of
neurodegeneration and a clinical picture not clearly consis-
tent with a recognizable non-AD phenotype.6 More specifi-
cally, during the early phases of AD CSF biomarker research,
p-tau was considered by some studies as a biomarker of neu-
ronal injury.10 However, it is now known that biomarker ab-
normalities, especially in “T” and “N” (for neurodegenera-
tion) categories, do not provide the same information within
and between modalities.35 Some authors argue that a CSF A−T+
pattern may reflect tau pathophysiology not attributable to Aβ
accumulation, such as primary age-related taupathy, but this
theory has become increasingly untenable due to the accu-
mulation of fluid biomarker evidence that tangle pathology in
the absence of concurrent Aβ pathology is not well reflected
by p-tau,37,38 although data specifically addressing this ques-
tion are still scarce. Importantly, we found that the A−T+ group
had similar tracer retention in temporal areas as the A−T−
group, suggesting that an isolated elevation of CSF p-tau is not
due to fibrillar tau pathology in the absence of Aβ pathology.
However, it is important to note that to date, no convincing
evidence has shown that tau-PET tracers are capable of cap-
turing PART, which remains a lingering question for the field.

In this challenging context of determining the underpin-
nings of a CSF A−T+ profile, a potentially better-suited expla-
nation is that the finding of increased p-tau in the absence of

Figure 2. Associations Between Cerebrospinal Fluid (CSF) Amyloid-Tau (AT) Status and Longitudinal Cognitive Decline
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Mean predicted trajectories of cognitive decline according to CSF AT status and
baseline cognitive status are shown for individuals who were cognitively
unimpaired (CU) (A) or had mild cognitive impairment (MCI) (B) at baseline in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and in 2 Wisconsin
cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry
for Alzheimer Prevention (WISC) (C). The mean predicted trajectories for the

modified Preclinical Alzheimer’s Cognitive Composite (mPACC; ADNI) and
modified 3-test PACC (PACC-3; WISC) are displayed with solid lines and 95% CIs.
Trajectories were estimated including terms for CSF AT status, covariates (age,
years of education, APOE ε4 genotype, sex, and practice [and cohort in WISC]),
as well as the age × CSF AT status interaction. A+/− indicates CSF Aβ42/40
binary status, and T+/− indicates CSF p-tau181 binary status.
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brain amyloidosis reflects slower CSF turnover. As an ex-
ample of how alterations in CSF dynamics can impact bio-
marker readings, low concentrations of all core biomarkers (ie,
p-tau, t-tau, Aβ42, and Aβ40) are commonly seen in cases of
idiopathic normal pressure hydrocephalus, not necessarily as-
sociated with AD pathophysiology.39 Interestingly, in the UGOT
and ADNI cohorts, concentrations of Aβ40 and Aβ42 were
clearly higher in the A−T+ group, compared with the A−T−
group. This could potentially suggest that the CSF A−T+ pro-
file is indeed associated altered CSF dynamics, given that
within 2 Aβ-negative groups as defined by the Aβ42/Aβ40 ra-
tio, it would not be expected that Aβ42 and Aβ40 values alone
would differ between groups.

Data from both longitudinal cohorts suggest that individu-
als with an A−T+ pattern had similar cognitive and biomarker tra-
jectories as compared with participants with a CSF A−T− pro-
file.Thisalignswithrecentfindingsinindividualswithsubjective
cognitive decline that showed that the A−T+ group was not more
likely to progress to MCI or dementia compared with the bio-
marker negative group when defining “A” using Aβ PET or Aβ42
and “T” using p-tau.7,40 However, when defining A−T+ with both
Aβ− and tau-PET, individuals with this profile show slightly
greater risk of cognitive decline than biomarker-negative
individuals.41

Lastly, the choice of cutoff values may influence the inter-
pretation of abnormal results. For Aβ42/40, this is likely of lim-

Figure 3. Associations Between Cerebrospinal Fluid (CSF) Amyloid-Tau (AT) Status and Longitudinal Biomarker Signs of β-Amyloid (Aβ)
Accumulation and Neurodegeneration
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ited relevance because it usually presents a bimodal
distribution23 andconcordancewithamyloidPETusuallyreaches
over 90%,42 which in turn makes cutoff determination and in-
terpretation uncomplicated. However, p-tau typically shows no
such distribution and is less clearly linked with tau-PET status.43

Here, we show that both p-tau cutoff values that optimize sen-
sitivity and specificity, as well as higher, less sensitive cutoff val-
ues presented very similar results in our study.

Strengths and Limitations
Strengths of this study include the large sample size of par-
ticipants with core CSF biomarkers of Aβ and soluble tau pa-
thology, allowing us to derive estimated prevalence of these
pathologies in a real-world, unselected clinical routine sample,
for whom memory clinic physicians order most CSF tests. Fur-
ther, our consistent finding that CSF A−T+ individuals do not
show significant cognitive decline suggests that the findings
are generalizable across different populations. Limitations in-
clude limited clinical information from the UGOT cohort, as
the data are derived from a database used in laboratory
practice. This precludes us from defining strict inclusion/

exclusion criteria and describing the clinical features of the pa-
tients included. Another potential limitation is that the lon-
gitudinal cohorts consisted primarily of self-identified White
individuals. Finally, AT status in the WISC sample was based
on CSF tests not necessarily coinciding with the cognitive base-
line visit.

Conclusions
In this cohort study, we found the estimated prevalence of a
CSF A−T+ profile to be 4.1% in a large, real-world, clinical rou-
tine data set. Further, individuals with this profile did not pre-
sent with significantly higher rates of cognitive decline or AD
biomarker progression than those of individuals with an A−T−
profile. We suggest that practitioners encountering this pat-
tern in daily clinical practice should interpret such a finding
similarly to CSF biomarker-negative results during the diag-
nostic workup of patients with cognitive complaints, and un-
usually high CSF Aβ42 and Aβ40 concentrations could be a rec-
ognizable feature of such a profile.
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